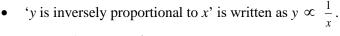
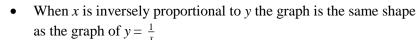
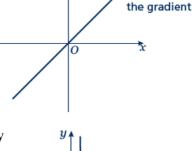
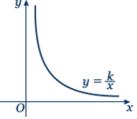

Proportion


A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems


Key points


- Two quantities are in direct proportion when, as one quantity increases, the other increases at the same rate.
 Their ratio remains the same.
- 'y is directly proportional to x' is written as $y \propto x$. If $y \propto x$ then y = kx, where k is a constant.
- When *x* is directly proportional to *y*, the graph is a straight line passing through the origin.



If
$$y \propto \frac{1}{x}$$
 then $y = \frac{k}{x}$, where k is a constant.

where k is

Examples

Example 1 y is directly proportional to x.

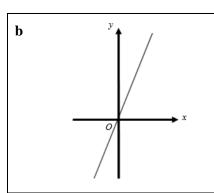
When
$$y = 16$$
, $x = 5$.

- a Find x when y = 30.
- **b** Sketch the graph of the formula.

a
$$y \propto x$$

$$y = kx$$
$$16 = k \times 5$$

$$k = 3.2$$


$$y = 3.2x$$

When
$$y = 30$$
, $30 = 3.2 \times x$ $x = 9.375$

- 1 Write y is directly proportional to x, using the symbol ∞ .
- 2 Write the equation using k.
- 3 Substitute y = 16 and x = 5 into y = kx.
- 4 Solve the equation to find k.
- 5 Substitute the value of k back into the equation y = kx.
- 6 Substitute y = 30 into y = 3.2x and solve to find x when y = 30.

7 The graph of y = 3.2x is a straight line passing through (0, 0) with a gradient of 3.2.

Example 2 y is directly proportional to x^2 .

When x = 3, y = 45.

a Find y when x = 5.

b Find x when y = 20.

a
$$y \propto x^2$$

$$y = kx^2$$
$$45 = k \times 3^2$$

$$k = 5$$
$$y = 5x^2$$

When
$$x = 5$$
,

$$y = 5 \times 5^2$$
$$y = 125$$

b
$$20 = 5 \times x^2$$

 $x^2 = 4$
 $x = \pm 2$

1 Write y is directly proportional to x^2 , using the symbol ∞ .

- 2 Write the equation using k.
- 3 Substitute y = 45 and x = 3 into $y = kx^2$.
- 4 Solve the equation to find k.
- 5 Substitute the value of k back into the equation $y = kx^2$.
- 6 Substitute x = 5 into $y = 5x^2$ and solve to find y when x = 5.
- 7 Substitute y = 20 into $y = 5x^2$ and solve to find x when y = 4.

Example 3
$$P$$
 is inversely proportional to Q .
When $P = 100$, $Q = 10$.
Find Q when $P = 20$.

$$Q$$

$$P = \frac{k}{Q}$$

$$100 = \frac{k}{10}$$

$$k = 1000$$

$$P = \frac{1000}{Q}$$

$$20 = \frac{1000}{Q}$$

$$Q = \frac{1000}{20} = 50$$

- 1 Write *P* is inversely proportional to Q, using the symbol ∞ .
- 2 Write the equation using k.
- 3 Substitute P = 100 and Q = 10.
- 4 Solve the equation to find k.
- 5 Substitute the value of *k* into $P = \frac{k}{Q}$
- 6 Substitute P = 20 into $P = \frac{1000}{Q}$ and solve to find Q when P = 20.

Practice

- Paul gets paid an hourly rate. The amount of pay (£P) is directly proportional to the number of hours (h) he works.When he works 8 hours he is paid £56.If Paul works for 11 hours, how much is he paid?
- •
- 2 x is directly proportional to y.

$$x = 35$$
 when $y = 5$.

- **a** Find a formula for x in terms of y.
- **b** Sketch the graph of the formula.
- c Find x when y = 13.
- **d** Find y when x = 63.
- 3 Q is directly proportional to the square of Z.

$$Q = 48 \text{ when } Z = 4.$$

- **a** Find a formula for Q in terms of Z.
- **b** Sketch the graph of the formula.
- c Find Q when Z = 5.
- **d** Find Z when Q = 300.
- 4 y is directly proportional to the square of x.

$$x = 2$$
 when $y = 10$.

- **a** Find a formula for y in terms of x.
- **b** Sketch the graph of the formula.
- c Find x when y = 90.
- 5 B is directly proportional to the square root of C.

$$C = 25$$
 when $B = 10$.

- a Find B when C = 64.
- **b** Find C when B = 20.
- **6** *C* is directly proportional to *D*.

$$C = 100$$
 when $D = 150$.

Find
$$C$$
 when $D = 450$.

7 y is directly proportional to x.

$$x = 27$$
 when $y = 9$.

Find
$$x$$
 when $y = 3.7$.

8 m is proportional to the cube of n.

$$m = 54$$
 when $n = 3$.

Find
$$n$$
 when $m = 250$.

Hint

Substitute the values given for P and h into the formula to calculate k.

Extend

- 9 s is inversely proportional to t.
 - a Given that s = 2 when t = 2, find a formula for s in terms of t.
 - **b** Sketch the graph of the formula.
 - **c** Find t when s = 1.
- 10 a is inversely proportional to b.

```
a = 5 when b = 20.
```

- a Find a when b = 50.
- **b** Find b when a = 10.
- 11 v is inversely proportional to w.

$$w = 4$$
 when $v = 20$.

- **a** Find a formula for v in terms of w.
- **b** Sketch the graph of the formula.
- c Find w when v = 2.
- 12 L is inversely proportional to W.

$$L = 12$$
 when $W = 3$.

Find W when L = 6.

13 s is inversely proportional to t.

$$s = 6$$
 when $t = 12$.

- a Find s when t = 3.
- **b** Find t when s = 18.
- 14 y is inversely proportional to x^2 .

$$y = 4$$
 when $x = 2$.

Find y when x = 4.

15 y is inversely proportional to the square root of x.

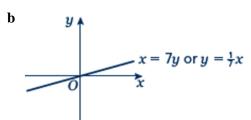
$$x = 25$$
 when $y = 1$.

Find x when y = 5.

16 a is inversely proportional to b.

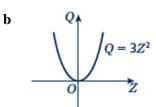
$$a = 0.05$$
 when $b = 4$.

- **a** Find a when b = 2.
- **b** Find *b* when a = 2.



Answers

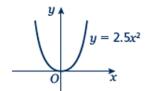
1 £77


2 a x = 7y

c 91

d 9

3 **a** $Q = 3Z^2$



c 75

 $\mathbf{d} = \pm 10$

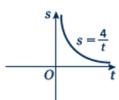
4 **a** $y = 2.5x^2$

b

5 a 16

c ±6

b 100

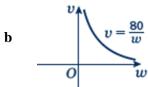

6 300

7 11.1

8 5

9 a $s = \frac{4}{t}$

b



c 4

10 a 2

b 10

11 a $v = \frac{80}{w}$

c 40

12 6

13 a 24

b 4

14 1

15 1

16 a 0.1

b 0.1